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Coarse grained molecular dynamics simulations
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DNA Collaborators: C. A. Brackley, D. Michieletto, B. Liebchen,
J. Johnson, M. C. Pereira, Y. Fosado, A. Bentivoglio
MD Simulators in Physics: 6. J. Ackland, M. Schor, C. MacPhee, R. J. Allen, B. Waclaw, 6. Melaugh



Confinement and 3D chromosome organisation
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A eukaryotic nucleus (size 10 microns) contains about 2 m of DNA
How does the cell solve this confinement problem?

First, DNA is wrapped around histones (size 10 nm) to form “chromatin”

Then hiacher arder combpaction of the chramatin fiher i€ needed |



Proteins and chromosome organisation
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Higher order compaction is also likely achieved by proteins,
which act as molecular bridges

Examples are: HP1, CTCF, TFs-RNA Pol complex, etc.



3D protein organisation and nuclear bodies
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TRENDS in Genetics

Nuclear proteins are also not organised randomly
They often cluster to form "nuclear bodies”

Examples are nucleoli, Cajal, polycomb and promyelocytic bodies



3D protein organisation and nuclear bodies
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TRENDS in Genefics

o

Nuclear proteins are also not organised randomly
They often cluster to form "nuclear bodies” (size 0.1-2 microns)
Examples are nucleoli, Cajal, polycomb and promyelocytic bodies

Polymerases also cluster in "transcription factories”
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What happens when we consider
many proteins interacting with DNA?
Start with non-mutually interacting

proteins binding non-specifically o DNA
sticky for bridges

v

bridges



How can we set up an MD simulation of

chromatin-protein systems ?
= 30 nm sphere (width of chromatin fibre)

Many "monomers” make up

the chromatin; each of these

satisfies a Langevin equation

d’x, dx.
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‘ = 30 nm sphere (width of chromatin fibre)

Any two monomers
interact with steric repulsion

(e.g. truncated-shifted LJ)
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‘ = 30 nm sphere (width of chromatin fibre)

Two neighbouring monomers
also interact through a

bonding potential (e.g. FENE)
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‘ = 30 nm sphere (width of chromatin fibre)

Two neighbouring links feel

a bending rigidity potential

(e.g. Kratky-Porod,
persistence length 40-200 nm)

Vbending (6 =d COS(tl- ‘ ti+1 )= Kb (1 - COS(6 ))
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Protein modelled as a sticky sphere

via a chromatin:protein
Lennard-Jones potential

whereas chromatin:chromatin
and protein:protein
interactions are repulsive (steric repulsion)
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Proteins cluster due to a 'bridging-induced' positive feedback:

proteins bridge the DNA, local DNA concentration increases, more bridges bind, efc.



This thermodynamic ‘bridging-induced attraction’ provides a

simple model for the biogenesis of a model nuclear body.
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Consider again non-interacting bridges
binding non-specifically fo DNA,
but where now bridges can ‘switch’

between binding and non-binding

(e.g. due to po;‘r’rr'ansla’rlonal modifications)
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Now the clusters/nuclear bodies which form do not coarsen indefinitely

and the cluster size in steady state can be controlled by reaction rates
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Let us now consider what happens when bridges can bind in two modes:
non-specific (low affinity) and specific (high affinity)
This is typical for most DNA-binding proteins (e.g. RNA Polymerase)

sticky for bridges

(non-specific interactions)

cific

W

very sticky for bridges

(specific interactions)



Now the clusters forming due to the 'briding-induced attraction
reach a limiting size even if bridges are in thermal equilibrium

Thic i€ becaus<e clucter<c create loobs and thec<e keeb cluster<s anart



An application: polycomb bodies in Drosophila

Non-specific and specific binding sites for polycomb bridges (PH)
were selected on the basis of (chromosome immunoprecipitation) experiments

The PH clusters formed in simulations (e,f)

roecomhle nalvveamhb hadice FalinAd via STODAM mirracranyv (A b))
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The cluster size distribution found in simulations with different initial conditions

matches well the experimental one



There is a problem though: the clusters formed in this way are static,

while photobleaching finds highly dynamic clusters (fast FRAP recovery)



Considering switching (rather than thermodynamic) bridges,

clusters are instead dynamic and continuously recycle their components



Coarse grained MD of DNA can be also made at much smaller resolution

(here there are two beads for each base in the DNA)

Yair Fosado



This was recently used to study the melting dynamics of supercoiled DNA

Fosado Michieletto Marenduzzo, 2017
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MD simulations show that supercoiled DNA unwinds differently, and much

more smoothly, with respect to linear DNA
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The mechanism can be understood by field theoretical methods:

the transition is smoother as the critical point

e crihetitiited bv a nhace raexicetenre reaion



water

Different coarse graining can also be used within the same study.
For instance recently we used atomistic simulations and
coarse-grained Monte-Carlo simulations

to study the physical behaviour of BslA at an interface

Brandani, Schor, Morris, Stanley-Wall, MacPhee, Marenduzzo, Zachariae, Langmuir (2015)
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It was found that BslA behaves as
a switchable Janus colloids at an oil/water interface.
The wild type sits up straight at the interface due to hydrophobic interactions;
mutants (with the hydrophobic cap disrupted) lie on
the side to minimise surface tension.

The MD results can be recapitulated by a simple model with ellipsoid and a surface.



Example of other work not covered in talk

Fully atomistic MD simulations of protein folding (Schor, Macphee)

MD simulations of metals, alloys and other condensed matter systems
(Ackland, includes work under high pressure)

MD simulations of bacterial biofilms and of

growing cell/bacterial colonies (Allen, Melaugh, Waclaw)

LB simulations of colloidal particles or droplets in fluids
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LB simulations can be used to s’rucﬁﬁs?sﬁ’ré/ms like liquid crystals

Without molecular detail (via continuum theory).
This is a structure for blue phase ITI which we proposed via LB simulations.

Henrich Stratford Cates Marenduzzo, PRL (2011); Henrich Marenduzzo, Physics World (2017)
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LB simulations can be used to study systems like liquid crystals
Without molecular detail (via continuum theory).
This is a structure for blue phase ITI which we proposed via LB simulations.

Henrich Stratford Cates Marenduzzo, PRL (2011); Henrich Marenduzzo, Physics World (2017)



